

The future is in the management tools

Profoss 22/01/2008

Niko Nelissen Co-founder & VP Business development Q-layer

Agenda

- Introduction
- Virtualization today
 - Server & desktop virtualization
 - Storage virtualization
 - Network virtualization
 - Application virtualization
- Virtualization future
- My management tool wishlist
 - Automation
 - Power reduction
 - Chargeback
 - Licensing reporting
 - Capacity planning
 - Live migration, load balancing & failover
 - Delegation: power to the user with VPDC
- Conclusion

What we need to manage

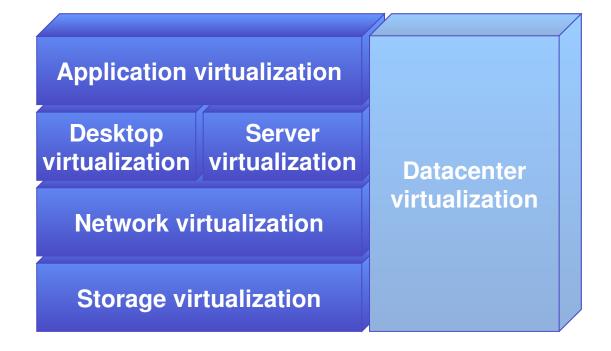
What the tools need to do

Introduction

Q-layer

- Q-layer provides datacenter virtualization software
 - Translate easy to understand parameters into actual provisioning in datacenter
- How ?
 - Orchestration of 3 layers:
 - Servers: all major hypervisors & physical servers
 - Network: VLAN's
 - Storage: Q-Store
 - Storage virtualization: Q-Store & Q-SAN

Virtualization today



Virtualization overview

Server virtualization

- What is it?
 - Break the direct dependency between OS and hardware
 - Run "guest" operating systems on top of a "host" operating system
- Players
 - VMWare
 - Xen
 - VirtualBox
 - Virtuozzo
 - KVM (kernel-based virtual machine)
 - Microsoft
 - ...

Server virtualization vs. desktop virtualization

Server virtualization

Specific requirements:

- Disk I/O performance
- Network I/O performance
- CPU, memory overhead
- Support for multiple cores
- Multiple virtual NIC's
- Support for Win 2003, Linux...

Desktop virtualization

Specific requirements:

- Remote USB support (printers...)
- Support of multiple monitors
- Hibernate VM when not in use
- Connection broker
- Good graphical support
- Support for Win XP, Vista...

Benefits of server virtualization

- Server consolidation
 - On average, only 15% of server resources is used in a datacenter
 - Using virtualization, utilisation can be increased to 80%, by consolidating servers
- Live migration
- Disaster recovery
- Replication
- Holistic management
- Provisioning of new servers in seconds
- Resize server capacity on the fly
 - Without virtualization, if an application requires more resources (storage, processing power or memory), migration to new hardware is needed, this takes multiple days

Types of server virtualization

Full virtualization

- Guest & host kernel are not "aware" of each other
- Unmodified guest OS
- Big overhead for I/O (slower performance)
- Only way to virtualize Windows (MS does not support changes to the HAL)
- Requires CPU with VT instruction set

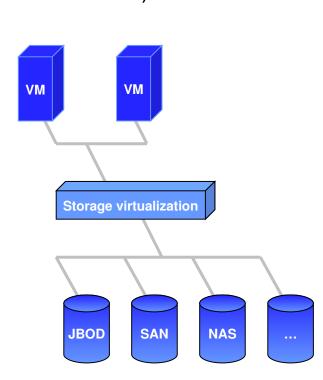
Paravirtualization (PV)

- Guest & host kernel "work together" to share resources
- Modified guest OS (modified kernel)

- Not possible for Windows, except for PV drivers for network & storage I/O in guest
- No VT instruction set required on CPU

Server virtualization checklist

- Supported "host" operating systems ?
- Supported "guest" operating systems ?
- ☐ Live migration?
- Memory ballooning (dynamically change memory VM) ?
- Supported storage layers ?
 - iSCSI (Gigabit Ethernet)
 - Fibre Channel
 - Infiniband
- ☐ Full virtualization or paravirtualization?
- Dedicated or shared resources ?



Storage virtualization

- What is it?
 - Consolidate storage
 - Seamless expansion
 - Thin provisioning (sparse volumes)
 - Snapshot
- Players:
 - EMC
 - Netapp
 - Datacore
 - Lefthand
 - Q-layer
 - ...

Block based versus file based

- File based (NAS)
 - Performance impact
 - Easy to manage
 - File-based management possible on NAS (e.g. file backup, deduplication using CAS = SIS)
- Block based (SAN)
 - High performance
 - More complex
 - No file-based management possible on SAN (e.g. file backup)

Network virtualization

- What is it?
 - Ability to design network topology in software
 - Single backplane for all I/O
 - VLAN's

- Players
 - Cisco
 - HP
 - Juniper
 - •

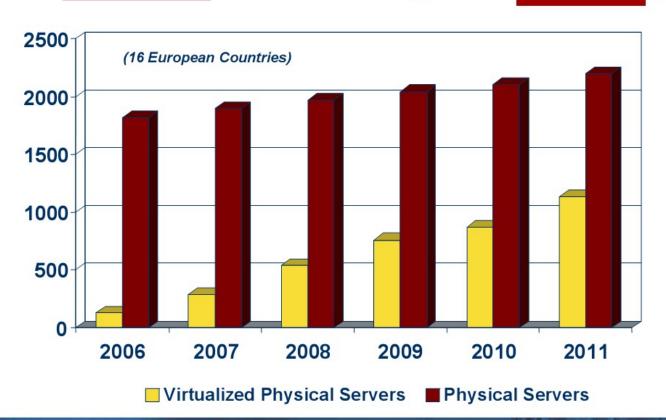
Application virtualization

- What is it?
 - Sandbox installed applications
 - Avoid conflicts between applications
 (e.g. different versions of shared libraries)
 - Avoid conflicts in Windows registry
- Players:
 - Microsoft Softgrid (used to be Softricity)
 - Altiris
 - •

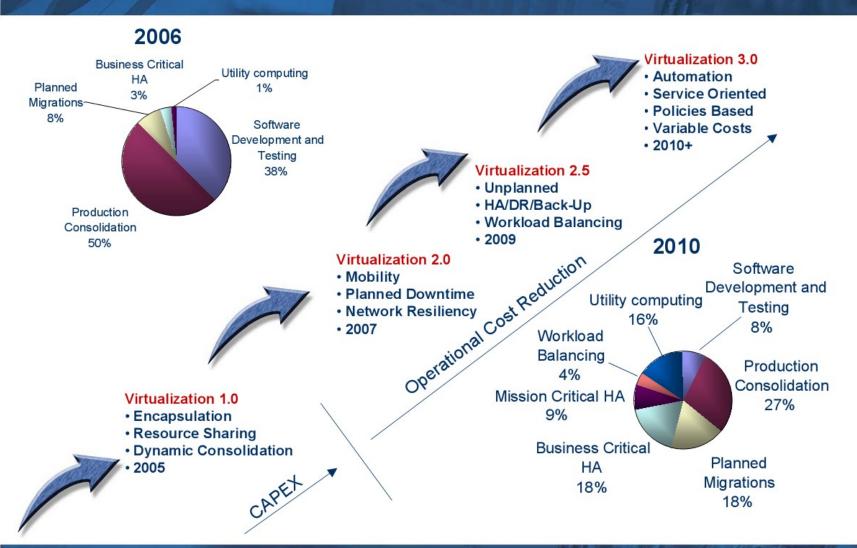
Microsoft SoftGrid

Virtualization future

Western Europe Virtualized Server Unit Shipment Forecast, 2006-2011



1.8 M Physical Servers 1.1M Virtualized Server


2.2M Physical Servers CAGR = 55%

CAGR = 3.8%

The Next Virtualization Milestones

Policy/Volue

Infrastructure maturity model

Gartner	Basic	Standardized	Rationalized Consolidate to	Virtualized Infrastructure resources pooled	Service- Based Services managed holistically	Policy/Value- Based Dynamic optimization to meet SLAs
Objective	ncoordinated infrastructure	Standard resources, configurations Reduce complexity	Economies of scale	Flexibility, reduce costs	Service-level delivery	Business agility
Ability to Change	Months to weeks	Weeks	Weeks to days	Weeks to minutes	Minutes	Minutes to seconds
Pricing Scheme	None, ad hoc	Fixed costs	Reduced, fixed costs	Fixed shared costs	Variable usage costs	Variable business costs
Business Interface	No SLAs	Class-of- service SLAs	Class-of-service SLAs	Flexible SLAs	End-to-end SLAs	Business SLAs
Resource Use	Unknown	Known	Rationalized	Shared pools	Service-based pools	Policy-based sharing
Organization	None	Central control	Consolidated	Pooled ownership	Service- oriented	Business-oriented
IT Management Processes	Chaotic – Reactive Ad hoc	Reactive — Proactive Life cycle management	Proactive Mature problem mgmt.	Proactive Prediction, dynamic capacity	Service End-to-end service management	Value Policy management

My management tool wishlist

Manage the whole stack

Security, monitoring, SLA...

Applications

Operating systems

Server Infrastructure

Storage Infrastructure

Network Infrastructure

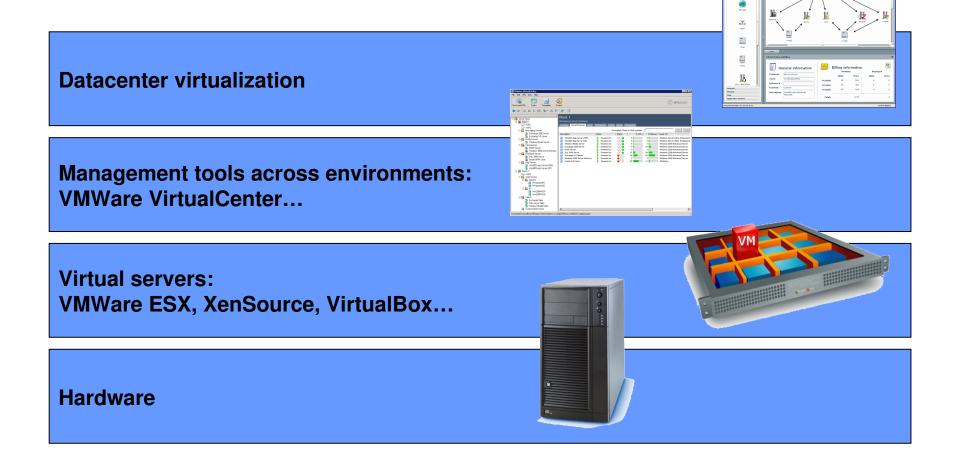
Bandwidth / Internet Connectivity

Rack space / Power

Automation

Automation

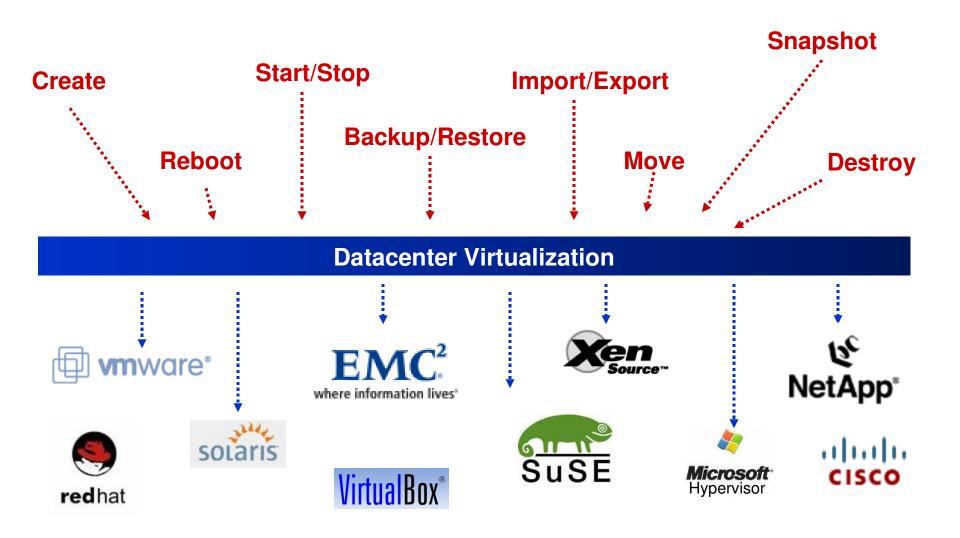
- Full automation comprises:
 - Server provisioning
 - Network provisioning (VLAN's, IP's...)
 - Storage provisioning
 - Configuration of firewall, monitoring, backup...
 - Billing
- Benefits:
 - Full online sales possible
 - No human errors
 - Instanst availability for customer
 - Reduce TCO



Levels of abstraction

What is datacenter virtualization?

- Uniform management of one or more datacenters
 - Support for all hypervisors
 - Support for physical (non virtual) servers
- Full automation
 - Automated provisioning of servers
 - Automated network configuration
 - Automated storage provisioning
 - "Lights off" in the datacenter
- Translate a complex environment to easy to understand parameters



Uniform management

Components of "datacenter virtualization"

- Server, network and storage virtualization
- Workflow engine
- Policy engine
- Agent framework
- A datacenter model

Power reduction

Power consumption facts

- In 2009, energy costs will emerge as the second-highest operating cost in 70% of worldwide data center facilities
- Servers account for 40% of the data center's overall power consumption. Storage isn't far behind, taking 37% of the overall power

Michael Bell, VP at Gartner

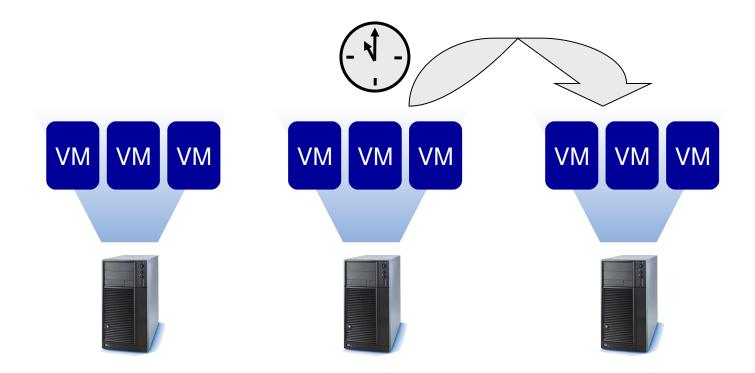
All power consumed requires at least the same amount in cooling

Power reduction: DC instead of AC

A-Server "Datacenter in a rack"

Storage and power reduction

Energy tradeoffs					
Implication					
More spindles boost performance but use more energy					
Cooling efficiency requires less density but wastes rack and floor space					
Faster disks increase performance but burn more energy					
Online data is much more readily available but burns more energy					
Small form-factor disks use less energy but require more spindles to achieve high capacity					



Software to reduce power

- Optimized capacity planning
- Consolidate VM's at night to less physical servers

License reporting

Licensing of operating systems

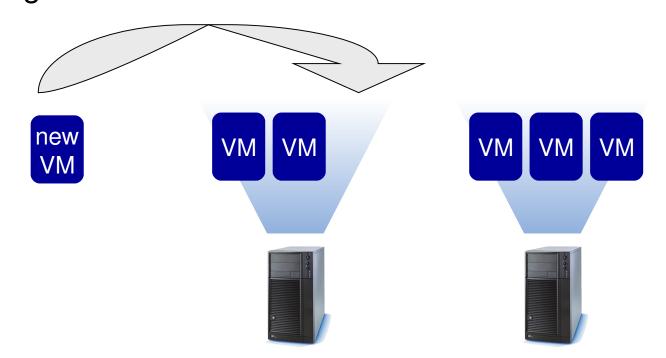
- Choosing the right hypervisor may depend on licensing policies
- Example: Redhat Enterprise is free for all VM's (guests) running on a Redhad Enterprise host
- Same to be expected from Microsoft SPLA and others
- You cannot rely on just one hypervisor to support all projects or customers

Chargeback

Chargeback

- Virtual environment is every changing
- Not easy to keep track of usage for billing
- Solution: concept of "credits"
 - Processing credits
 - combines CPU & memory usage
 - Network credits
 - Bandwidth
 - Firewall usage
 - ...
 - Storage credits
 - 3 levels of performance: archive, normal, ultra fast

Capacity planning



Capacity planning

- Select optimal physical server for new VM
- Support for multiple "tiers", e.g. test & live environment
- Ability to change business logic
- Reporting on available resources

Live migration, load balancing & failover

Live migration, load balancing & failover

- Live migration: tool for planned maintenance
- Load balancing: automatically move VM's if load on physical server too high
- Failover: boot VM on other physical server when server dies

Virtual private datacenter

Self-service provisioning

Resource description

✓ Operating system: Win

Windows, Linux, NAS...

☑ Processing capacity:

1 Ghz, 2 Ghz, 4 Ghz...

✓ Memory capacity:

500 MB, 1 GB, 2 GB...

✓ Storage capacity:

100 GB, 1TB, 10 TB...

✓ Storage performance:

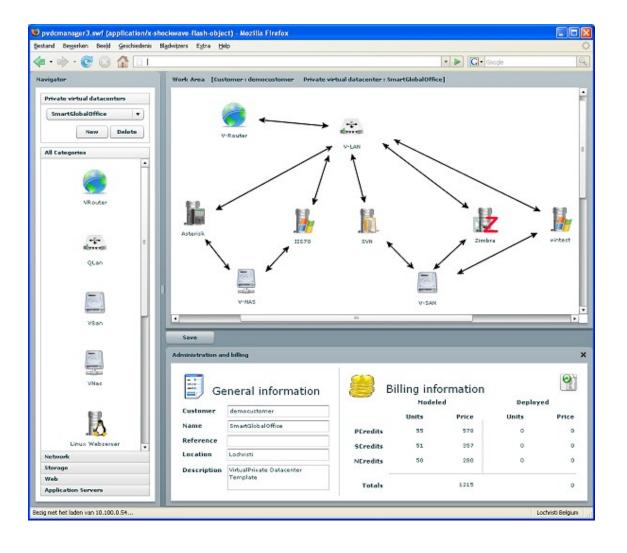
normal, fast, ultrafast.

☑ Redundancy level:

single, raid, HA..

Enterprise business unit manager

Service provider end-customer



Demo

Conclusion

Conclusion

- Hypervisors are commodity
 - Choose the right hypervisor for each server or project
 - There will be licensing impact
 - You will need multiple hypervisors
 - Avoid "lock-in"
- Every layer is equally important
 - Virtualize servers, but also storage and network
 - Automation is the key to scalability
 - Automation allows for better uptime and reduces TCO!
- Model the datacenter
 - Keep track of all resources
 - You can no longer "follow the network cable" or count the servers in your rack!

Thank you!

Questions or remarks? niko@q-layer.com

