HA clustering made simple with OpenVZ

Werner Fischer, Thomas-Krenn.AG (wfischer@thomas-krenn.com)

Profoss Virtualisation event 2008 Brussels, 23rd January 2008

slide 1/33

Short Bio

• Werner Fischer

 2000-2004: Computer- and Media Security (Upper Austria University of Applied Sciences, Hagenberg Campus)

- 2004-2005: IBM Mainz, Linz, San Jose/CA, Raleigh/NC
- redbooks covering HA Clustering and Storage
- since 9/2005: Thomas-Krenn.AG, R&D (HA-Clustering, Virtualisation)
- relationship to OpenVZ project
 - using OpenVZ for over two years
 - focussing on OpenVZ clustering, written HOWTO http://wiki.openvz.org/HA_cluster_with_DRBD_and_Heartbeat

1. Cluster Technolgies Overview

- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

1) Cluster Technolgies Overview

- term *clustering*
 - High Availability (HA) cluster
 - Load Balancing cluster
 - High Performance Computing (HPC) cluster
 - Grid computing

- 1. Cluster Technolgies Overview
- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

- High Availability (HA) cluster
 - goal: increase availability of services
 - elimination of all SPOFs (single points of failure)
 - failover / switchover
 - 2-node-clusters widely-used

Uptime [%]	Downtime per year	Downtime per week
98 %	7,3 days	3 h 22 min
99 %	3,65 days	1 h 41 min
99,8 %	17 h 30 min	20 min 10 sec
99,9 %	8 h 45 min	10 min 5 sec
99,99 %	52,5 min	1 min
99,999 %	5,25 min	6 sec
99,9999 %	31,5 sec	0,5 sec

active/passive vs. active/active with 2-node-clusters

- when would active/active bring advantages
 - mainly when each of the two servers exceed an utilisation of 50%

- what would be the consquense in case of an outage?
 - the remaining node does not have enough free ressources, services cannot be provided reliable

- cluster tests:
 - manual switchover tests (2)
 - power outage tests (7)
 - serial connection tests (4)
 - crossover network connection tests (4)
 - public network connection tests (9)
 - shutdown tests (2)
 - reboot tests (2)
 - hard drive outage tests (2)

- Shared Storage (SAN) vs. Replicated Storgae
 - Shared Storage
 - Shared SCSI, Fibre Channel SAN, iSCSI SAN
 - storage system can be SPOF
 - Shared Resource Protection (Node/Resource Level Fencing (STONITH, SCSI Locking), Quorum)
 - Replicated Storage
 - eg. DRBD (Distributed Replicated Block Device)
 - no dedicated storage system (no SPOF)
 - cost-effective
 - Shared Resource Protection less critical

slide 9/33

- 1. Cluster Technolgies Overview
- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

challenges of traditional HA cluster systems

traditional HA Cluster

local data shared data

- most applications need to be customised
 - config files (/etc) must be synchronised manually (or be replaced by symbolic links to /data/...)
 - keeping system config files like /etc/passwd in sync is complex
 - time-consuming and error-prone -> causes additional costs

slide 11/33

clustering of entire virtual machines

 whole file system of a virtual machine is mirrored

 applications are only installed once (within the virtual machine), not twice (on each node)

virtualised HA Cluster

node2

(base-

system)

slide 12/33

- Operating System
 - Community ENTerprise
 Operating System
 - based on Red Hat Enterprise Linux
 - strives to be 100% binary compatible with the upstream product
 - www.centos.org

slide 15/33

slide 16/33

- OS virtualisation
 OpenVZ
 Server virtualization
 - containers-type virtualisation on Linux
 - creates multiple secure, isolated containers (VEs, VPSs)
 - single-kernel technology
 - enables better server utilisation
 - allows resource configuration
 - http://openvz.org
 - (other OS virtualisation tech.: VServer, FreeBSD Jails, Solaris Containers)

- 1. Cluster Technolgies Overview
- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

OpenVZ components:

- Kernel
 - Virtualization and Isolation
 - Resource Management
 - Checkpointing
- Tools
 - vzctl: Virtual Environment (VE) control utility
 - vzpkg: VE software package management
- Templates
 - precreated VE images for fast VE creation

slide 19/33

Each virtual environment has its own:

• Files

System libraries, applications, virtualized /proc and /sys, virtualized locks etc.

• Process tree

Featuring virtualized PIDs, so that the init PID is 1

Network

Virtual network device, its own IP addresses, set of netfilter and routing rules

• Devices

Plus if needed, any VE can be granted access to real devices like network interfaces, serial ports, disk partitions, etc.

IPC objects

shared memory, semaphores, messages

OpenVZ Resource Management:

- User Beancounters is a set of per-VE resource counters, limits, and guarantees (kernel memory, network buffers, phys pages, etc.)
- Fair CPU scheduler

(with shares and hard limits)

• Two-level disk quota

(first-level: per-VE quota; second-level: ordinary user/group quota inside a VE)

• I/O scheduler

(two-level, based on CFQ)

OpenVZ Kernel Checkpointing/Migration:

- Complete VE state can be saved in a file
 - running processes
 - opened files
 - network connections, buffers, backlogs, etc.
 - memory segments
- VE state can be restored later
- VE can be restored on a different server

OpenVZ Tools:

<pre># vzctl</pre>	create	101ostemplate fedora-core-5		
<pre># vzctl</pre>	set 101	ipadd 192.168.4.45save		
<pre># vzctl</pre>	start 1	.01		
<pre># vzctl</pre>	exec 10	1 ps ax		
PID TTY	STAT	TIME COMMAND		
1 ?	Ss	0:00 init		
11830 ?	Ss	0:00 syslogd -m 0		
11897 ?	Ss	0:00 /usr/sbin/sshd		
11943 ?	Ss	0:00 xinetd -stayalive -pidfile		
12218 ?	Ss	0:00 sendmail: accepting connections		
12265 ?	Ss	0:00 sendmail: Queue runner@01:00:00		
13362 ?	Ss	0:00 /usr/sbin/httpd		
13363 ?	S	0:00 _ /usr/sbin/httpd		
13373 2	· · · · · · · · · · · · · · · · · · ·	0.00 $(ucr/shin/httpd)$		
6416 ?	Rs	0.00 ns axf		
# vzc+1	ontor 1	61		
	encer 1			
bash# logout				
<pre># vzctl</pre>	stop 10	1		
# vzctl dostrov 101				
# VZCIL UESTION TOT				

OpenVZ Tools:

vzpkgls
fedora-core-5-i386-default
centos-4-x86 64-minimal

vzpkgcache
(creates templates from metadata/updates existing
templates)

vzyum 101 install gcc
(installs gcc and its deps to VE 101)

Performance Evaluation of Virtualization Technologies for Server Consolidation (April 2007, HP Laboratories Palo Alto):

"For all the cases tested, the virtualization overhead observed in OpenVZ is limited, and can be neglected in many scenarios."

(http://www.hpl.hp.com/techreports/2007/HPL-2007-59.pdf)

- 1. Cluster Technolgies Overview
- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

5) live switchover enhancement

- uses OpenVZ's checkpointing feature
- allows rolling kernel-upgrades without shutting down virtual environments

- the following scripts are necessary:
 - cluster_freeze.sh
 - cluster_unfreeze.sh
 - live_switchover.sh
 - an adjusted init script for openvz

slide 27/33

- 1. Cluster Technolgies Overview
- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

6) outlook: LBVM

- LBVM (load balancing of virtual machines)
 - allows sharing virtual machines among physical servers in a predefined cluster
 - LB MONITOR: load balancer itself (uses different algorithms to decide which virtual machines should be moved or reported)
 - LBM script: management interface to the load balancer (is used to view all balanced virtual machines, review log files and reports, manually migrate)
 - LB LOG: small cronjob which runs regularly on each server to monitor predefined resources (the resource logs are stored on a shared storage and are evaluated by the load balancer)

6) outlook: LBVM

slide 30/33

- 1. Cluster Technolgies Overview
- 2. HA clustering best practices
- 3. Concept of HA cluster with OpenVZ
- 4. OpenVZ details
- 5. Live Switchover enhancement
- 6. Outlook: LBVM (load balancing of virtual machines)
- 7. Conclusion

7) Conclusion

What is it?	Linux High Availability Cluster with OS-level virtualisation
What does it do?	 mirrors whole virtual environments on two cluster nodes restarts virtual environments in case of an outage on the second (remaining) node
Who can use it?	Linux administators
What are typical usage szenarios?	Misson-Critical database server, mail server, web server,

Resources

- http://openvz.org/
- http://wiki.openvz.org/HA_cluster_with_DRBD_and_Heartbeat
- http://www.centos.org/
- http://www.linux-ha.org/
- http://www.drbd.org/
- http://www.hpl.hp.com/techreports/2007/HPL-2007-59.pdf
- http://lbvm.sourceforge.net/

Thanks for your attention!