The Future of Asterisk

Kevin P. Fleming
Director of Software Technologies
Digium, Inc.
kpfleming@digium.com

Summary

xBackground
xHistory
xRecent Events
xCurrent Development
xFuture Plans

Where did we come from?

Created by Mark Spencer in 1999 to 'ill a
need’, as all open source projects begin.

“| was so excited the first time | got a
phone call delivered through my PC using
my own software.” - Mark Spencer

Community Contribution

xOver 400 contributors from around the
globe

xMore than 2/3rds of new major features in
each release contributed by community

Digium Contribution

Development team has grown from 2 full-
time developers in mid-2005 to 10 (and still
growing!)

Asterisk core design and architecture
improvements

Integration of third-party commercial
products

Asterisk Release History

Version 0.1.0 — First Release
December 5th, 1999
Mark Spencer, Author
Released under GPL
Version 0.2.0
September 12th, 2002

Added Queues, Agents, MeetMe,
Speex

Asterisk Release History
Version 0.3.0
February 7th, 2003

Major SIP Improvements, G.729a,
MGCP Support

Version 0.4.0
April 11th, 2003

IAX2, IAX2 Trunking, and Macros
added

Version 0.5.0
September 9th, 2003
ILBC,.SIP and IAX Video Support

Asterisk Release History

Version 0.7.0
January 13th, 2004

SCCP, AES Encryption, ODBC Support for
CDRs

Version 0.9.0
April 12th, 2004

CVS Branched as “Stable,” ADPCM, DSP
Fixes

Version 1.0.0
September 23rd, 2004

More CDR Backends, GR-303, OSP, NFAS,
G.726

Asterisk Release History

Version 1.2.0
November 16th, 2005

Distributed Universal Number Discovery
(DUNDI)

Asterisk Extension Language (AEL)
Realtime for SIP, IAX users/peers
Native / Internal Music on Hold
IAX2 Encryption
Q.SIG
FastAGI — AGI across TCP, like FastCGl
ODBC Voicemail Storage

Asterisk Release History

Version 1.4.0
December 25th, 2006
Variable Length DTMF
T1.38 FAX passthrough
Shared Line Appearance
Multithreaded |AX2
IMAP Voicemail Storage
Generic jitter buffer
Asterisk Extension Language (AEL2)
Jabber/Jingle/ XMPP/Googletalk

Development History

xBug/issue reports now average 8-10 per
day

xCode commits range from 60-150 per
update release

xSecurity issues handled by core team in
24-48 hours from initial report

AsteriskNOW

x"“Asterisk Software Appliance”
xBased on rPath Linux and rBuilder

xTightly-focused distribution designed for
building Asterisk servers

Asterisk GUI Project

xSimple, HTTP/AJAX based framework

xDoes not require any software outside of
Asterisk and a web browser

xManages existing Asterisk configuration
files

Asterisk Project Security
Advisories

Formal reporting of vulnerabilities and subsequent
advisories

Coordination with other advisory reporting
organizations and common advisory tracking
numbers

Fully transparent reporting to enable end users to
quickly understand vulnerability

Advisories posted and archived at
http://www.asterisk.org/security

Call Bridging

Flexible multi-channel bridging

Channels can be added and dropped, so
calls instantly convert from two-party to
multi-party

Will simplify and stabilize features like
spying, whispering, in-call announcements,
etc.

RTP media streams

Performance, performance, performance!

Initial tests have shown 100-200%
improvement in number of RTP media
streams that a given server can handle

Will also reduce thread/memory footprint
for handling large numbers of media

streams

Dialing

Simplified but extensible internal dialing
API

Will make it easier to ensure that all
applications that can dial channels have
the same features/functionality

For the first time, will expose more
complex dialing features

(acknowledgment, call forwarding) to AMI
and spool files

Codec (format) negotiation

Support for end-to-end negotiation of
media stream formats

In-call media negotiation for stream
format changes (mu-/A-law to T.38 for

example)

Support for media stream 'attributes’
required for video streams and complex
voice codecs

Asynchronous Events

New core infrastructure to handle events
between Asterisk modules

Will eliminate 'polling’ for applications like
voicemail MWI

Can be extended across a cluster of
Asterisk servers using DUNDiI-like
mechanism

Call event logging

Will allow complete tracking of 'events’
that take place during a call

Can support far more functionality than
CDRs

Will eventually support custom events
from within the dialplan, allowing for audit
trails to be created

SS7 Support

xSS7 support for trunking only (not
applications)

XWIll support both ANSI and ETSI variants

xLimited to a single Asterisk server
servicing a point code

IPv6 Support

xDeveloped by community members

xSupported across all Asterisk channel
protocols and interfaces

xWhen the network supports IPv6e, NAT
problems will disappear (we hope)

Clustering and Failover

Research continues on infrastructure
required

Goal is to be able to support active-active
failover between a pair of Asterisk servers
with minimal call disruption

Will require some extensive rework of
internal data structures to allow
synchronization between servers

Separate signaling and media

Extend NFAS and SS7 support to allow
for signaling links to live on servers without
bearer channels, or servers to have bearer
channels without signaling links

Allow Asterisk to be used as a media
gateway platform from other softswitches

The problem

Users want a stable product with new
features frequently

Developers need new functionality to get
adequate testing

Long release cycles mean no regular’
users test new features, so bugs don't get
found before release

Developers don't work with the released
code as often

Current Release Process

When developers decide, the development branch
(‘trunk’) is copied (branched) into a release branch

An indeterminate period of time (at least a few
months) passes during which attempts are made to
test and stabilize the release branch

During this time, the development branch is 'frozen'’
except for minor fixes, thus halting further
development

Once the release branch has been released, no
new features are added to it

New Release Process

Development branch will always be in 'release
candidate' mode; all changes made to this branch
should be release-worthy and bug free

Periodically, a release branch will be made from the
development branch and quickly brought to a
releasable state

No changes will be made to this release branch
except for security vulnerabilities and regressions
found during testing of the branch

The development branch continues to receive
changes during this time

An example release

2007-11-01: trunk branch copied to branch 1.6.0,
and first 1.6.0 release candidate tagged and
released as 1.6.0-rc1

2007-11-05: after a few days of testing and bug
fixes being applied, 1.6.0-rc2 is released

2007-11-10: more testing/fixing time, and if no
regressions are left to resolve, 1.6.0 is released

2007-11-11: trunk branch copied to branch 1.6.1,
and process repeats

(for illustration purposes only; these dates and
release numbers are not real!)

Benefits to Users

New features become available within weeks or
months of being developed, instead of one year or
longer

Developers and users are deploying and testing the
same code base, thus enabling developers to more
quickly find and fix bugs

Support for new devices, interoperability changes
and other interactions arrives more quickly

