

The Future of Asterisk

Kevin P. Fleming
Director of Software Technologies

Digium, Inc.
kpfleming@digium.com

Summary

✗Background
✗History

✗Recent Events
✗Current Development

✗Future Plans

Where did we come from?

Created by Mark Spencer in 1999 to 'fill a
need', as all open source projects begin.

“I was so excited the first time I got a
phone call delivered through my PC using

my own software.” - Mark Spencer

Background

Community Contribution

✗Over 400 contributors from around the
globe
✗More than 2/3rds of new major features in
each release contributed by community

Digium Contribution

✗Development team has grown from 2 full-
time developers in mid-2005 to 10 (and still
growing!)
✗Asterisk core design and architecture
improvements
✗Integration of third-party commercial
products

History

Asterisk Release History

– Version 0.1.0 – First Release
 December 5th, 1999
 Mark Spencer, Author
 Released under GPL

– Version 0.2.0
 September 12th, 2002

 Added Queues, Agents, MeetMe,
Speex

Asterisk Release History
– Version 0.3.0

 February 7th, 2003
 Major SIP Improvements, G.729a,

MGCP Support
– Version 0.4.0
 April 11th, 2003

 IAX2, IAX2 Trunking, and Macros
added

– Version 0.5.0
 September 9th, 2003

 iLBC, SIP and IAX Video Support

Asterisk Release History
– Version 0.7.0
 January 13th, 2004

 SCCP, AES Encryption, ODBC Support for
CDRs

– Version 0.9.0
 April 12th, 2004

 CVS Branched as “Stable,” ADPCM, DSP
Fixes

– Version 1.0.0
 September 23rd, 2004

 More CDR Backends, GR-303, OSP, NFAS,
G.726

Asterisk Release History
– Version 1.2.0

 November 16th, 2005
 Distributed Universal Number Discovery

(DUNDi)
 Asterisk Extension Language (AEL)
 Realtime for SIP, IAX users/peers
 Native / Internal Music on Hold

 IAX2 Encryption
 Q.SIG

 FastAGI – AGI across TCP, like FastCGI
 ODBC Voicemail Storage

Asterisk Release History
– Version 1.4.0

 December 25th, 2006
 Variable Length DTMF
 T.38 FAX passthrough

 Shared Line Appearance
 Multithreaded IAX2

 IMAP Voicemail Storage
 Generic jitter buffer

 Asterisk Extension Language (AEL2)
 Jabber/Jingle/XMPP/Googletalk

Development History

✗Bug/issue reports now average 8-10 per
day
✗Code commits range from 60-150 per
update release
✗Security issues handled by core team in
24-48 hours from initial report

Recent Events

AsteriskNOW

✗“Asterisk Software Appliance”
✗Based on rPath Linux and rBuilder
✗Tightly-focused distribution designed for
building Asterisk servers

Asterisk GUI Project

✗Simple, HTTP/AJAX based framework
✗Does not require any software outside of
Asterisk and a web browser
✗Manages existing Asterisk configuration
files

Asterisk Project Security
Advisories

✗Formal reporting of vulnerabilities and subsequent
advisories
✗Coordination with other advisory reporting
organizations and common advisory tracking
numbers
✗Fully transparent reporting to enable end users to
quickly understand vulnerability
✗Advisories posted and archived at
http://www.asterisk.org/security

Current Development

Call Bridging

✗Flexible multi-channel bridging
✗Channels can be added and dropped, so
calls instantly convert from two-party to
multi-party
✗Will simplify and stabilize features like
spying, whispering, in-call announcements,
etc.

RTP media streams

✗Performance, performance, performance!
✗Initial tests have shown 100-200%
improvement in number of RTP media
streams that a given server can handle
✗Will also reduce thread/memory footprint
for handling large numbers of media
streams

Dialing

✗Simplified but extensible internal dialing
API
✗Will make it easier to ensure that all
applications that can dial channels have
the same features/functionality
✗For the first time, will expose more
complex dialing features
(acknowledgment, call forwarding) to AMI
and spool files

Codec (format) negotiation

✗Support for end-to-end negotiation of
media stream formats
✗In-call media negotiation for stream
format changes (mu-/A-law to T.38 for
example)
✗Support for media stream 'attributes'
required for video streams and complex
voice codecs

Asynchronous Events

✗New core infrastructure to handle events
between Asterisk modules
✗Will eliminate 'polling' for applications like
voicemail MWI
✗Can be extended across a cluster of
Asterisk servers using DUNDi-like
mechanism

Call event logging

✗Will allow complete tracking of 'events'
that take place during a call
✗Can support far more functionality than
CDRs
✗Will eventually support custom events
from within the dialplan, allowing for audit
trails to be created

SS7 Support

✗SS7 support for trunking only (not
applications)
✗Will support both ANSI and ETSI variants
✗Limited to a single Asterisk server
servicing a point code

IPv6 Support

✗Developed by community members
✗Supported across all Asterisk channel
protocols and interfaces
✗When the network supports IPv6, NAT
problems will disappear (we hope)

Future Plans

Clustering and Failover

✗Research continues on infrastructure
required
✗Goal is to be able to support active-active
failover between a pair of Asterisk servers
with minimal call disruption
✗Will require some extensive rework of
internal data structures to allow
synchronization between servers

Separate signaling and media

✗Extend NFAS and SS7 support to allow
for signaling links to live on servers without
bearer channels, or servers to have bearer
channels without signaling links
✗Allow Asterisk to be used as a media
gateway platform from other softswitches

Release Management

The problem

✗Users want a stable product with new
features frequently
✗Developers need new functionality to get
adequate testing
✗Long release cycles mean no 'regular'
users test new features, so bugs don't get
found before release
✗Developers don't work with the released
code as often

Current Release Process

✗When developers decide, the development branch
('trunk') is copied (branched) into a release branch
✗An indeterminate period of time (at least a few
months) passes during which attempts are made to
test and stabilize the release branch
✗During this time, the development branch is 'frozen'
except for minor fixes, thus halting further
development
✗Once the release branch has been released, no
new features are added to it

New Release Process
✗Development branch will always be in 'release
candidate' mode; all changes made to this branch
should be release-worthy and bug free
✗Periodically, a release branch will be made from the
development branch and quickly brought to a
releasable state
✗No changes will be made to this release branch
except for security vulnerabilities and regressions
found during testing of the branch
✗The development branch continues to receive
changes during this time

An example release
✗2007-11-01: trunk branch copied to branch 1.6.0,
and first 1.6.0 release candidate tagged and
released as 1.6.0-rc1
✗2007-11-05: after a few days of testing and bug
fixes being applied, 1.6.0-rc2 is released
✗2007-11-10: more testing/fixing time, and if no
regressions are left to resolve, 1.6.0 is released
✗2007-11-11: trunk branch copied to branch 1.6.1,
and process repeats
✗(for illustration purposes only; these dates and
release numbers are not real!)

Benefits to Users

✗New features become available within weeks or
months of being developed, instead of one year or
longer
✗Developers and users are deploying and testing the
same code base, thus enabling developers to more
quickly find and fix bugs
✗Support for new devices, interoperability changes
and other interactions arrives more quickly

Thank You!

